
Data Fusion CSC Design Requirements

Version 1.0 1 08/20/97-1:01 PM

Data Distribution & Processing CSCI
Data Fusion CSC

Requirements Design Panel 3

August 8 , 1997
Version 1.0

Data Fusion CSC Design Requirements

Version 1.0 2 08/20/97-1:01 PM

1. Data Distribution & Processing CSCI

The Data Distribution & Processing CSCI is composed of the following CSCs:

Data Distribution CSC, Data Fusion CSC, and Data Health CSC.

1.1 Data Fusion CSC Introduction

1.1.1 Data Fusion CSC Overview

Data Fusion involves computation using constants, FD measurement values, health values or other fusion
values. The Data Fusion CSC provides the capability to perform Data Fusion processing on specified FDs
received at the DDP, based on algorithms defined for the associated FDs.

Data Fusion CSC Overview is as follows:

Current
Value
Table

Current
Value
Table

Data Distribution Processing
- Update CVT
- Build and output DD packets

Data Fusion Processing
- Subscribe FD from Data Distribution
- Access TCID for Fusion Algorithm Table
- Publish Fusion FD to Data Distribution
- Send system message

System/Application Services
- System Control
- System Messages Services

SSR Data Distribution Processing
- Send FD values/status/timestamp
 to requesting application

System/Application services
- FD Services
- User Display Services

Applications
- User Displays
 -- Fusion Viewer

DD Packet / DSR

TCID

DDP

HCI

Gateway

Dath Fusion
 Editor

- Fusion Algorithm
 Table file

CM
Repository

List of FDs
from user

Other Dev Platform
 (Location TBD)

DBSAFE
Database

Approved
new FDs

TCID
Build

Data Distribution Processing
- Send FD values/status/timestamp
 to requesting application

System/Application services
- FD services

Current
Value
Table

User ApplicationCCP Algorithms

DD Packet
 SSR

Data Fusion CSC Design Requirements

Version 1.0 3 08/20/97-1:01 PM

1.1.2 Data Fusion CSC Operational Description

Data Fusion can be divided into two segments, a user development segment, and a run time segment.

The user development segment involves:

• User off-line definition of Data Fusion Algorithms via the use of a Data Fusion Editor

• Integrate Test build of the Data Fusion Algorithm Table

The run time segment consists of:

• Loading the Data Fusion Algorithm Table during DDP initialization

• Applying data fusion on FDs received at the DDP by the Fusion processes

• Storing computation results in the CVT and making the data accessible by applications via
Data Distribution.

1.2 Data Fusion CSC Specifications

1.2.1 Data Fusion CSC Ground Rules

1. Data Fusion inputs can be any valid FDs available in the data stream.

2. The maximum number of FDs used in a single calculation is 100.

3. The maximum number of FD samples in a single calculation is 200.

4. The user will specify Data Fusion FD data types using the defined engineering units data types (Refer

to Appendix C).

5. Data Fused FDs shall be treated the same as any other FDs.

6. Fusion calculations/formulas may contain user-changeable coefficient.

7. Fusion FDs and Fusion algorithms cannot be created in a real-time environment. They must be

edited/created prior to TCID build.

8. Data Fusion will not support user overriding Fusion output and inhibiting Fusion calculation for

Redstone.

9. The user will associate a fusion algorithm with a Fusion name, or RSYS name.

10. There will be a single algorithm table per TCID.

11. Data Fusion CSC will make use of Data Distribution API to obtain and store fusion data from/to the

CVT and / or queued services.

12. Data fusion data will be made available for applications access at the DDP, CCP, and HCI via Data

Distribution.

13. Applications with the exception of Data Health manager and Data Fusion manager, will obtain fusion

data via FD Services.

14. Data Fusion will be performed on a one-pass execution basis, so that processing is done with a

cohesive set of data.

15. Data Fusion supports forward fusion only. Fusion output can not be used as Fusion input on the same

processing cycle.

16. The user may alter user-changeable coefficient at real-time as needed to change the data fusion

calculation but not the formula.

Data Fusion CSC Design Requirements

Version 1.0 4 08/20/97-1:01 PM

1.2.2 Data Fusion CSC Functional Requirements

The following Data Fusion Functional requirements are listed under two sections:

• Data Fusion Editor

• Data Fusion run time processing

The requirements for the Editor and run time processing will be used as specification for COTS

evaluation. ControlShell was chosen as a viable COTS tool. ControlShell will be utilized as a run-

time engine for Data Fusion processing. There are several requirements for the Data Fusion

Editor that are not available through the component editor of ControlShell. The editor capability

for Redstone will be done using a UNIX text editor. Details of the ControlShell editor

requirements which are not available are italicized below.

1.2.2.1 Data Fusion Editor (DFE)

 The italicized items in items 1, 2, and 3 above are not available in the ControlShell
component editor. Items which are italicized but in bold are not available in ControlShell
but can be accomplished with another editor. Italicized items will not be demonstrated for
Redstone. The other items will be revisited in Thor and if the capability is required a
solution which demonstrates the requirement will be delivered.

1. DFE will provide an Graphical User Interface (GUI) allowing user to:

a. select input FDs using a list of FDs in a user specified file
b. define fusion algorithms/formula using predefined operators list
c. select output FD
d. enter data validity requirement(s) of a fusion FD. User may specify formula for resultant health

determination of the Fusion FD.
e. query and search other data fusion FD and their compositions to help create new ones

• Provide filtering options for search
i. FD name
ii. group of FDs
iii. Fusion name
iv. RSYS name
v. Keyword

f. copy, cut, and paste of an existing Fusion algorithm to create a new algorithm
g. modify a fusion algorithm
h. save algorithm definition to an existing file
i. save algorithm definition to a new file (user defined)
j. exit without saving
k. test the new algorithm (debug option)

• Allow user to enter values of input FDs
• Allow user to create value of user changeable variable
• Output resulted FD value and status

l. print FD and associated algorithm

2. DFE will display error messages when:

a. A duplicate fusion output FD is entered. Upon which the user will be prompted with a “override”
message.

b. Inconsistent data types are entered

3. DFE will provide On-Line Help

Data Fusion CSC Design Requirements

Version 1.0 5 08/20/97-1:01 PM

4. DFE will support prioritization of fusion algorithms

5. DFE will provide the following Arithmetic Operators:
a. Addition (+)
b. Subtraction (-)
c. Multiplication (*)
d. Division (/)
e. Modulus

6. DFE will provide the following Relational Operators:
a. Less Than (<)
b. Greater Than (>)
c. Less than or equal to (<=)
d. Greater than or equal to (>=)
e. Equivalent (=)
f. Not equivalent (/=)

7. DFE will provide the following Logic Operators:

a. AND
b. OR
c. XOR
d. NOT

8. DFE will provide the following Bitwise Operators:
a. AND
b. OR
c. XOR
d. Left Shift
e. Right Shift
f. Ones complement
g. Twos complement

9. DFE will provide the capability to support the “if then else” conditional operator either inside or
outside of the equation/calculation

10. DFE will provide the capability to support the Power Function (a**b)
11. DFE will provide the capability to support the Exponential Function (e**x)
12. DFE will provide the capability to support the Square Root Function
13. DFE will provide the capability to support bi-directional conversions:

a. knots < = > miles per second
b. degrees < = > radian
c. BCD < = > Decimal
d. hours < = > minutes
e. Time of Day (TOD) < = > Greenwich Mean Time
f. meters < = > feet
g. miles < = > feet
h. Centigrade < = > Fahrenheit
i. pounds < = > grams
j. pounds per sqare inch < = > pounds per sqaure foot
k. gallon < = > litter

14. DFE will provide the capability to support the following mathematical functions:
a. Absolute
b. ln
c. Log10

15. DFE will provide the capability to support the following Trigonometric Operators:
a. sin()
b. cos()
c. tan()
d. cot()
e. sec()
f. csc()

Data Fusion CSC Design Requirements

Version 1.0 6 08/20/97-1:01 PM

g. atan()
16. DFE will support the Average function:

a. for changed values.
b. for values over time

17. DFE will support the Minimum/Maximum Function
a. e.g., Given floating point value of 1.5 : min returns 1 and max returns 2
b. e.g., Given a number of FDs : min returns the lowest and max returns the highest

18. DFE will support predefined constants:
a. pi

19. DFE will support filtering operators:
a. e.g., spike capture
b. e.g., spike elimination
c. e.g., digital filter

20. DFE will support data smoothing operator
a. Sample rate reduction (e.g., 100 sample/sec to 1 sample/sec)

21. DFE will support data differentiation and integration operators:
a. 1st derivative based on time
b. integral based on time

22. DFE will support health operators:
a. test if an FD is failed
b. test if an FD is in warning condition
c. test if ‘x’ of ‘y’ conditions are true (voting logic)

23. DFE will conform to operator procedures. The DFE will generate the Data Fusion Algorithm
Table consisting of but not limited to the following information:

a. input FD(s)
b. output FD
c. algorithm to generate out value
d. algorithm to determine output health
e. object name
f. fusion name or RSYS name
 ControlShell does not create a table and this capability will not be demonstrated in Redstone.

1.2.2.2 Data Fusion Manager (DFM) in the DDP

1. DFM will execute the operation defined in the Algorithm component.
2. DFM will make fused FDs available to be incorporated to the Data Distribution packets.
3. DFM will support prioritizing fusion algorithm execution.
4. DFM will provide the capability allowing user to control when fusion FDs are executed:

a. Executes whenever an input or a set of inputs is changed within a SSR (cycle). This capability is an
event driven algorithm. An algorithm can be designed to execute only once or twice during a run,
but the algorithm must manage execution based on the trigger FD.

b. Executes whenever a fusion process is scheduled.
All algorithms will be executed in a cyclic fashion.

1.2.2.3 Data Fusion Manager Future Requirements

1. The Data Fusion Manager will capture run time errors and display them via an appropriate system

messaging mechanism. (post Redstone).

2. The Data Fusion Manager will provide an application interface allowing application to:

a. inhibit processing on any user selected Fusion FDs (post Redstone).
b. activate processing on any user selected Fusion FDs (post Redstone).
c. override a Fusion FD value. The changed value will be persistent. (post Redstone).

Data Fusion CSC Design Requirements

Version 1.0 7 08/20/97-1:01 PM

1.2.3 Data Fusion CSC Performance Requirements

 The following performance requirements are under RID review process, subject to change.

1. The Data Fusion will process up to the “system maximum data bandwidth” of FDs with one
fusion calculation per change.

2. The Data Distribution shall support the “system maximum data bandwidth”, plus 5,000 (20%)
Data Fusion updates per second.

1.2.4 Data Fusion CSC Interfaces

 Data
Distribution Data

 Fusion

Applications
(via FDservice)

 System
Messages

Data Fusion Context Diagram

Data Fusion

Disable/enable
an Fusion FD Publish FDs.

Subscribed FDs

.

Send system message

 TCID Algorithm Table

System Control

System config info
System Config Reqs

Data Fusion CSC Design Requirements

Version 1.0 8 08/20/97-1:01 PM

1.2.5 Data Fusion CSC Data Flow Diagram

External

Data
Distribution

 Data
 Fusion

CVT

 TCID
- Fusion Algorithm Table

User
Application

FD
Service
API

Disable/enable
 an Fusion FD

DD
APIs

Subscribe FD

Publish Fusion FD

 Fusion
 API

External

Data
Distribution

 Data
 Fusion

CVT

 TCID
- Fusion Algorithm Table

User
Application

FD
Service
API

Disable/enable
 an Fusion FD

DD
APIs

Subscribe FD

Publish Fusion FD

 Fusion
 API

Data Fusion CSC Design Requirements

Version 1.0 9 08/20/97-1:01 PM

Internal

Data
Distribution

Fusion
Process

CVT

DDP
send
Process

 DDP
merger
Process

input
change
data

all input,
fused, &
health
data

DDP
fusion

fusion
outputs

fusion
inputs

DDP

Fusion
Algorithm
Table

Data Fusion CSC Design Requirements

Version 1.0 10 08/20/97-1:01 PM

1.3 Data Fusion CSC Design Specification
The Data Fusion process begins with an off-line portion which builds the components. After the components have
been created, they are submitted to the test build process to build a ControlShell application executable be included
in a TCID. The fusion algorithms for the TCID are executed during a run. The fused FDs are then sent through a
Data Fusion FD manager to be published as required.

Create ControlShell stub:

inputs, outputs,
algorithm name,

 execution method

Edit ControlShell code
using an editor to insert
the algorithm to create

a ControlShell
algorithm component

(Done manually)

Create ControlShell
components for FDs by

using the CS component stub
and inserting appropriate

calls to subscribe or
publish FDs

(Done manually)

Validate FDs
against valid
FDs for TCID

(Done by inspection)

Combine Algorithm and
FD CS components to form

appropriate habitats for
the CS engine

(create .cog and .dat files)
(Done manually)

Create DF_Fusion Manager
which will execute all

the CS habitats
(Done manually)

Submit to CM build
process for the TCID

.cog and .dat files
The TCID build takes place

Fusion Definition Process - Redstone

TCID OPS CM

Software & Data Build Process (Done Manually for Redstone)

Fusion Definition Process (Redstone)
The Data Fusion definition process begins with creating a ControlShell component stub. The ControlShell stub
allows the user to create the inputs , outputs, algorithm name, and to identify the execution method. The algorithm
must then be created using a UNIX editor and merged with the ControlShell stub. The resulting module is called a
ControlShell algorithm component.

After the algorithm components have been created, ControlShell FD components for the algorithms are created.
Creation of ControlShell FD components is done in a similar manner to creating an algorithm component. First
create the stub, and then edit the stub to insert the appropriate calls to get the input FDs or publish the resulting
fused FDs.

After the ControlShell Algorithm components and the ControlShell FD Components have been created, a validation
of the FDs used must take place. This requires comparing the FDs input and output from the algorithm components
to insure that the FDs are valid for the TCID. This process will be done by inspection for Redstone.

After the FDs have been validated against the TCID, the FD components and the algorithm components must be
combined into units for execution. The combination of these components creates a sample habitat. Habitats are an
execution unit, managed by the ControlShell engine, to execute the specified algorithms at a pre-set cycle rate. Each
habitat can be run at a different cycle rate.

ControlShell requires that the habitats be merged into a file, so the ControlShell engine can execute each habitat at
the desired cyclic rate. The ControlShell engine is built during compile time. The ControlShell engine uses the

Data Fusion CSC Design Requirements

Version 1.0 11 08/20/97-1:01 PM

resulting .cog and .dat files to create the complete engine.

Finally, code must be added to the ControlShell engine to allow the Fusion process to start and stop during any given
TCID. The combined code, the ControlShell engine and the start and stop mechanism forms the DF_Fusion
Manager. ControlShell allows the cycle rates to be changed during a run, for any given habitat. It also allows for
algorithms to be marked as executable or dormant. These capabilities will be available in post-Redstone releases.
The DF_Fusion Manager must also have the code to alter execution rates of habitats and mark as executable or
dormant. These capabilities will be in a post-Redstone release.

The Fusion definition process is defined in the data fusion general flow diagram as the DF_Fusion Builder (section
1.3.1). The components, habitats, and manager code, created by the DF_Fusion Builder are submitted to the TCID
build process. For Redstone, this will be a manual process. Automation of some or all of the fusion definition process
will be done in a post-Redstone release.

1.3.1 Data Fusion General Flow
 The Data Fusion definition process, which will be done manually for Redstone, is depicted in the DF_Fusion

Builder. Portions of the DF_Fusion Builder which require a validation process will be done by inspection for
Redstone. Automating the functions within the DF_Fusion Builder will be post-Redstone activities.

FD1
*

Algorithm 5

DF_FD
Manager

Supplies algorithms
with queued FDs

Outputs fused FDs

DDP API

FD Services

ControlShell Engine API

DF_Fusion Manager I/F

DF_Fusion
Builder

I.
Collects

Algorithms
 (future)

II.
Determine

Required FDs
(future)

Validate
Required FDs

(future)

III.
Build

FD Components
for CS

Build Appropriate
.cog and .dat files

FD Components

Sample Habitat 1

Algorithm Components

DDP

Algorithm 1

Sample Habitat 2 to n

Algorithm 4

Algorithm 3

Algorithm 2FD2
*

FD4
*

FD

FD

FD
Queued

FD3
**

FD5
**

FD**

FD**

FD**

FD

FD
Queued

Symbol Key :

* Poll FD value via FD
 Services API

** Output Fused FD values
 via Data Fusion API

ControlShell
Component

Get Queued FD
value via Data
Fusion API

Queued
data
 request

Queued
data

DF Fusion Manager

Fused Data

Fused Data

Fused Data

 The DF_FD Manger is custom built code which allows the fusion algorithms to access queued FDs and publish
fused FDs. The DF_ FD Manager utilizes Data Distribution APIs to access or publish the required FDs.

 The DF_Fusion Manager is a combination of custom built code and the ControlShell tool. It’s main purpose is

to perform the execution of the fusion algorithms during a specific run.

Data Fusion CSC Design Requirements

Version 1.0 12 08/20/97-1:01 PM

 DF_Fusion Builder

 The DF_Fusion Builder is the custom built code which completes the fusion definition process. Details of the

definition process are listed in the previous section entitled Fusion Definition Process.

 Once the algorithm components have been created, all the algorithms must be combined into appropriate

habitats. This will be done manually for Redstone. Ways to automate the process of collecting all the algorithm
components and combining them into habitats will be investigated in post-Redstone releases.

 Determining the FDs required and validating the FDs against the valid FD list for a particular TCID is also

discussed in the Fusion Definition Process section above. These processes will be done by inspection for
Redstone. Automating the validation procedure will be investigated in post-Redstone releases.

 The final portion of the DF_Fusion Builder is the building of the ControlShell components and inserting any

additional code required to build the DF_Fusion Manager. Again, this process is described in detail in the above
section, Fusion Definition Process. This portion of the DF_Fusion Builder will be done manually for Redstone.
Automating this procedure will be investigated in post-Redstone releases.

 Fusion Execution Run-Time Process

 DF_FD Manager

 The DF_FD Manager is custom built process which allows the fusion algorithms, being executed by the

DF_Fusion Manager, to access queued FDs and to publish fused FDs. An algorithm which requires a queued FD
will make a call to the DF_FD Manager API, ddf_get_queued_FD. The DF_FD Manager will determine the
queue size, and collects all the FDs requested from different components then make a call to the Data
Distribution API, ddp_get_queued_FD. The DF_ FD Manager will mange all requests for queued data and
return the required FD values to the requesting FD component.

 All fused FDs will be processed through a fused FD component which call the DF_FD Manager to publish the

fused FD. The fused FD component will issue a ddf_publish_FD call. The DF_FD Manager will determine
where the FD should be published and the call the Data Distribution API, ddp_publish_fusion_FD to distribute
the fused FD as required.

 DF_Fusion Manager

 The DF_Fusion Manager is a ControlShell application which consists of a sample habitat, the ControlShell

engine, and the DF_Fusion Manager.

 The sample habitat consists of two distinct ControlShell components. The first component is the FD

component. There is one FD component for each FD. There is also one FD component for each fused FD. The
FD components make a call to an FD_Services API, asv_fds_get_FD, to read single value FDs. The FD
component makes a call to the DF_FD Manager, using ddf_get_queued_FD to read any queued FD data. All
fused FDs are output through a fused FD component. The fused FD component makes a call to the DF_FD
Manager via ddf_publish_FD API. The second ControlShell Component within a sample habitat is the
algorithm component. The algorithm component contains the code which represents the algorithm execution
process. This is a ControlShell component which is built during the fusion definition process. The algorithm

Data Fusion CSC Design Requirements

Version 1.0 13 08/20/97-1:01 PM

component does not call any APIs directly. Any FDs required for the algorithm execution are accessed through
an FD component. The grouping of the algorithm components and the associated FD components become a
sample habitat.

 The ControlShell engine executes the sample habitats in a cyclic manner or an event. Each habitat may run on a

different cycle time. A clock tick is issued each time a sample habitat executes. The clock tick can be a preset
value or defined by the algorithm component developer. The clock tick definition is done by the DF_Fusion
Builder during the fusion definition process.

 The DF_Fusion Manger interface is the custom code which interfaces the ControlShell application with its

outside world. It calls the ControlShell engine API and any additional directives which are required for the
fusion execution. For Redstone, the start fusion and stop fusion directives would be the only additional code.
ControlShell allows for changing the execution rate on a particular habitat as well as turning the execution on or
off for a particular algorithm component within a habitat. The rate change and the specific algorithm component
directives are changed through a handle to the habitats which are provided by the ControlShell tool. Utilization
of these habitat change mechanisms may be demonstrated in a post-Redstone release.

Data Fusion CSC Design Requirements

Version 1.0 14 08/20/97-1:01 PM

1.3.2 Data Fusion External Interfaces

 Data Fusion external interfaces are made through the FD components or by the DF_FD Manager. The FD

components call FD Services to receive single value FDs. The call is to asv_fds_get_FD. Queued FD values
and fused FDs are received or published by an internal interface calls within the Data Fusion CSC.

1.3.3 Message Formats
 Message Number = 1
 Message Group = DDF
 Severity = Informational

 DDF Manager is initialized

 Help Information Content:
 The Data Fusion Manager has successfully been initialized with the appropriate algorithms for this TCID.

 Message Number = 2
 Message Group = DDF
 Severity = Critical

 DDF Manager Unable to initialize

 Help Information Content:
 The Data Fusion Manager has could not be initialized with the appropriate algorithms for this TCID.

 Message Number = 3
 Message Group = DDF
 Severity = Major

 DDF Unable to complete algorithm

 Help Information Content:
 The Data Fusion Manager received an error from an algorithm indicating the algorithm terminated with

an error condition

 Message Number = 4
 Message Group = DDF
 Severity = Informational

 DDF Manager is terminating

 Help Information Content:
 The Data Fusion Manager is terminating for this TCID.

1.3.4 Display Formats
 None. (For Redstone)
1.3.5 Input Formats
 None.
1.3.6 Recorded Data
 None.
1.3.7 Printer Formats
 None.
1.3.8 Interprocess Communications
 None.
1.3.9 External Interface Calls (API calling formats)

Data Fusion CSC Design Requirements

Version 1.0 15 08/20/97-1:01 PM

 asv_fds_get_FD
 Gets a single FD value from the CVT.

 ddf_get_queued_FD
 Gets an FD which need to be queued for the executing algorithm from DF_FD Manager.

 ddp_get_queued_FD
 Returns queued data to DF_FD Manager.

 ddf_publish_fusion_FD
 Published fused FD value

1.3.10 Table Formats
 None. (For Redstone)

1.3.3 Data Fusion Test Plan

1.3.3.1 Build Time Test Plan
A. Create several FD algorithm components utilizing actual algorithms available from various subsystems.
B. Put FD algorithms in CM repository
C. Submit for TCID build
1.3.3.1 Run-Time Test Plan
A. Run several cyclic FD algorithms. These algorithms will be sample algorithms from various subsystems which

will exercise the functionality specified in the Data Fusion Editor portion of this document. Some algorithms
may exercise more than one type of functionality. If the subsystem sample algorithms do not cover a particular
specification, an test algorithm will be generated. It is expected that a subsystem algorithms will be able to cover
all the available functionality within the Data Fusion Editor for Redstone. The subsystems from which we have
sample algorithms are, SLWT, HMF, Fuel Cells, and Metro.
1) At a specified rate
2) At a different rate
3) Verify the higher priority FD ran first

C. Generate a system message

Post Redstone Issues / Considerations

1. Automated method to get fusion algorithms into the TCID build.
2. Store and view fusion algorithms via the system viewers.
3. Automate method to validate required FDs against the TCID.
4. Editor requirements for fusion algorithms.

Data Fusion CSC Design Requirements

Version 1.0 16 08/20/97-1:01 PM

APPENDIX A

Statement of Work

• Define the list of logical and mathematical function required by the users for Data Fusion FDs.
• Define the list of logical and mathematical functions required by the users for Data Fusion Health.
• Define the Data Fusion FD types.
• Determine if a COTS tool can be utilized and provide the selected tool.
• Provide the initial Pre-build Data Fusion Editor.
• Provide the Data Fusion capability as part of the CLCS DDP Group.
• Provide the capability for Fused FD’s to be utilized by the Data Distribution Manager for both the CCP

and the HCI.
• Provide the capability to add fused FD’s to the Data Bank.
• Provide the capability for Fused FD’s in the Test Build process
• Provide an initial System Viewer with the minimum capability to view fused FD’s, including the Fused

FD value, associated input FD values and the function being used to generate the Fused FDs.
• Incorporate fused FDs into the record and retrieve capability with same capability as Gateways FD’s

and User Application Derived FD’s.
• Provide the capability for the Data Fusion Function to be utilized in both Operational and Application

environment (eg.. DDP & HCI/DDP/CCP/GW/MM Logical Subsystems).
• Provide performance data for system modeling
 Post-Redstone Activities
• Provide capability to inhibit processing on individual Fusion FD’s.
• Provide the capability for Fused FD’s to be used utilized by the Constraint Manager Function.

Data Fusion CSC Design Requirements

Version 1.0 17 08/20/97-1:01 PM

 Appendix B

 Possible Algorithm Repository Structure

 The Fusion Algorithm Repository will reside in TBD. User who create algorithms will put the approved

algorithms in the Fusion Algorithm Repository. Each subsystem will be able to manage how their fusion
algorithms are executed. The algorithms should be divided into two categories. Cyclic algorithms execute at a
particular rate. All algorithms listed in a particular group will execute at the same rate. The rate may be changed
by issuing a rate change from an application. (details TBD). If a subsystem requires several algorithms to be
executed at a particular rate and another group of algorithms executed at a different rate, they will put them in
two sub-directories labeled appropriately. For illustration purposes, they are labeled Faster and Slower in the

Fusion Repository

Subsystem “N”

Cyclic Algorithms Event Algorithms

Faster Slower

Data Fusion CSC Design Requirements

Version 1.0 18 08/20/97-1:01 PM

diagram. A subsystem may change the rate of execution or either group of algorithms. The rate may be increased
or decreased as required. The subsystem may also execute event driven algorithms. It is assumed that the event
driven algorithms will only execute once or twice a run. The event driven algorithms which are required to run
multiple times should be placed in the cyclic directory.

 The Fusion API will execute a UNIX script to traverse the Fusion Algorithm Repository collecting the

appropriate algorithms for the TCID.

